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1. Introduction 3. Permutation Importance 5. Backwards Optimization
« Machine learning (ML) is becoming widely used in weather research. « Ranks importance of each predictor (xj) by measuring how o Also called “feature optimization” (Olah et al. 2017).
e ML is often faster and better than competing prediction methods. much performance declines when x is permuted o Goal: create synthetic input that maximizes or minimizes model prediction.
: : e ) . . ' . o ; 5
e« However, many are reluctant to adopt ML in operations, because it is a “black box” (does not j - -  Example: create storm with tornadogenesis probability of 100% or 0%.
explain deCiSiOnS tO user). (randomly Shufﬂed Over a” CaseS). Vorticity, MAX from 5-8 km AGL Vorticity, MAX from 5-8 km AGL
T ions: singl (Brei 2001) and i e Procedure involves gradient descent, which requires starting point. Examples:
[ Our WOrk attempts tO bridge thiS gap. ° W(I)ﬁverSIo?LS.kSIlqg e-paSS t rlelznc])ig) an f;;l Reflectivity, MIN from 1-3 km AGL Vorticity, MEAN from 5-8 km AGL _ Uniform image (a” ZerOS)
« We apply several interpretation methods to a convolutional neural network (CNN) trained to MUiti=pass {Lakshimahan et al. ' » Random image (Gaussian noise)
predict tornadogenesis. Sinol . onl dictor at a fime domived — = Dataset example
 Goal: understand what CNN has learned, which has benefits in all three phases of ML (Selvaraju et * 2Ingle-pass. only one predictor at a ime 15 rahdomized.
al. 2017). M Iﬁ . Vorticity, MEAN from 2-4 km AGL Reflectivity, MEANfron‘v 1-3 km AGL ° We use dataset examples (Figures 7_8).
o UFm(rj)arTS]f)St important predictor nd leave it randomived R, B0 e 1 e AL Vorticity, MIN from 2--km AGL e Caveat: does not neceggar”y peruce realistic data.
1. Deve|0 ment hase - ) No permutation | Vorticity, MIN from 5:8 km AGL
P D : : : ? »  Find 2"%-most important and leave it randomized p | '
= Used for debugging (does the model learn relationships that make sense?) : : , - | EE——————— ||| SN & L -
2. Operational phase = ...Repeat until all predictors are randomized. 0 H? L. 0
= Increases users’ trust and understanding in the model . . . . Figure 4: Results of permutation 3 : h’ ﬁ 5
= Highlights situations where model should (not) be trusted » Single-pass ano! multi-pass versions (Figure 4) agree on importance. Showing only top 10
3. ML-superiority phase 4 of top 5 predictors: (of 17) predictors, with most
= If ML ever vastly outperforms humans at forecasting, can be used to teach humans = v-wind o important at top. Radar predictors ﬂ ‘LE = '
= Already being done for Chess (Johns et al. 2015) and Go (Silver et al. 2016) = Max 1-3-km reflectivity In orange; sounding predictors in 2 "“ A 2 # :
= Max 5-8-km vorticity purple; “AUC” is area under ROC i
e Also, ML interpretation can be used to form new scientific hypotheses (Wagstaff and Lee 2018). = Max2-4-km vorticity curve for validation data. T L T
2. Machine Learning 4. Saliency Maps -
e Prediction: probability of tornadogenesis for each storm in next 60 minutes e Definition: gradient of model prediction with respect to input value. ; - t . g 1 "
5 5 . !
o Labels (ground truth): NWS tornado reports :
» Predictors: radar and soundings I; __ Op Ao LIKMAGL NP iAKAGL. MEANTOMBAImAGL  MEAN Mo mAGL MAX fom 1Y KMAGL  WNFom i3 KmAGL  MEANTomZARmAGL  MEAN o 5.8 m AGL
SAUENEY = 5. —— e ThaT T e e e e
. Radar deta"S: CEZQZO [ | .-licljclsclso'o'o'o'.—i .-Iicljcljcljo'o'o'o'.—i |1 |.| W [ | EE
= Storm-centered grid of 12 variables (Figure 1) every 5 minutes e p =model prediction (probability of tornadogenesis) Figure 7: Results for 100 best hits. Backwards Figure 8: R?SL]”S ]COF 100 worst misses.
= 32 x 32, 1.5-km resolution, storm motion to the right e x = input value (one predictor at one grid point) optimization applied to each storm separately, = Backwards ODUmIZEi.UOH app"?d to eaph storm
= From GridRad dataset (Homeyer et al. 2017); currently experimenting with MYRORSS (Ortega et ¢ X = actual value of x in dataset example with goal of decreasing tornadogenesis separately, V\{lth goal o.f.lncreasmg
al. 2012) probability to 0%. tornadogenesis probability to 100%.
, , o Thus, saliency is linear approx to 9P about x = x..
e Sounding details: 0x 0
= From nearest grid cell in Rapid Refresh (RAP) or Rapid Update Cycle (RUC) analysis . . : :
. RUC before 1 May 2012, RAP otherwise o Saliency tells us how prediction changes when x changes a little bit. 6. Novelty Detection
e Time period: 145 days in 2011-17 (2011-13 for training, 2014-15 validation, 2016-17 testing) ’ Flnglgre 6ﬁhOVi/51((:)%mpOSI’Eje sallengy Maps fOr.4hSﬁchh°f stforms: habilit; e Goal: find most novel image in trial set with respect to baseline set.
« Performance on testing data shown in Figures 2-3 = Best Ifts|_ I tornadogenetic storms with highest ore‘casﬁp[]o abl |t|bes « Novelty detection also determines which parts of novel image make it novel.
» Worst false alarms = 100 non-tornadogenetic storms with highest probs « Used to flag Mars Rover images for further investigation (Wagstaff and Lee 2018).
o =  Worst misses = 100 tornadogenetic storms with lowest probs
3 = Best correct nulls = 100 non-tornadogenetic storms with lowest probs . We apply novelty detection to a different CNN:
E = Prediction: probability that simulated storm will develop strong rotation (future vorticity >
= I 0.0054 s anywhere in storm)
2 . N = Predictors: storm-centered grids of reflectivity, temperature, wind
%O 8 2 ﬂ g . e I, =  Source: one member of NCAR convection-allowing ensemble (Schwartz et al. 2015)
G S Figure 2: ROC curve 3 ' 3 Q ARy \ NS PRTPIEL Ve
Q i o _ e A = g B | T
= £ (Metz 1978). Each e Baseline set = 100 random (mostly weak) 2 £ o T N
204 point in the curve g : storms in 2015 . . = =
S corresponds to one 5 re ; 3 » Trial set = 100 storms in 2015 with strongest
= g probability 8 -ﬂ 8 — future rotation
= 0. :rg n :rg g @)) ..........
E threshold. Area g g . o _ emoscanpescus  nmosno
< under curve = 0.89. » Novelty maps (Figure 9) highlight the = e, o W SEEIHHIEHT D
) e following properties: | B | e e
AR Lo M LR L R S R e 2 DOED brababiity of e derectice = i e i = Strong reflectivity core E
L T LM TP = . i ﬂ , i ¢ Y = Rotational winds near reflectivity core : _ FOOML i
: o o | | g - S = Lack of surrounding deep convection cul e L
Figure 1: Radar predictors for one case (one = o e
storm cell at one time). CNN is trained to : : 7. Future Work W e R i
predict probability that storm will undergo < - 5 g FHEEE- = PER . iERRREERTARRRRRC e R
IS | G e S 3 . SRR TN
tornadogenesis in the next hour. g 2 ; § « BAMS publication under review (McGovern % i % 9
et 065 i i e 1 HiN &
> 3 ST TN e et T ek L U T et al. 2019). e ————
1504 e SERRSRER  CoNTIYLeR  NTeUNTe ngqTeoNTe SERRSRER  CSONTIESS MQYeINTe nqqyeonTe « Develop ways to test statistical significance SR N
;3 ; Figure 5: Composite map for each set of Figure 6: Composite saliency map for each set of Interpretation results. . — -
Figure 3: Performance diagram (Roebber 2009) ¢ ¢ storms, showing only 4 of the 12 radar of storms. Heat maps represent input data » Apply interpretation methods to multiscale B
for testing data. Dashed grey lines are 0.2 0.2 predictors. (predictors). Solid contours are positive data (E;g-, raldar Image + mte.;.oscale and ff
iqg- At i i ity i synoptic-scale environments). , , ,
frequency bias; each point in the red curve }Eﬁ_’ saliency (tornadogenesis probability increases i e yriendierhale b A Fisure 9: Most novel storms in the trial set
corresponds to one probability threshold. ; . . . , . with predictor values inside contour); dashed € VIL P P (left column): most novel part of each storm
Maximum CSI =0.27. 8o oz o4 o5 08 1o O contours are negative saliency. scientific hypotheses. " (right column).



	Slide 1

